\(\int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [169]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 78 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a} (2 A+B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a B \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \]

[Out]

(2*A+B)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))*a^(1/2)/d+a*B*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos
(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {3060, 2853, 222} \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a} (2 A+B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}} \]

[In]

Int[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(Sqrt[a]*(2*A + B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (a*B*Sqrt[Cos[c + d*x]]*Sin[c
+ d*x])/(d*Sqrt[a + a*Cos[c + d*x]])

Rule 222

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2853

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {a B \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}+\frac {1}{2} (2 A+B) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {a B \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}}-\frac {(2 A+B) \text {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d} \\ & = \frac {\sqrt {a} (2 A+B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a B \sqrt {\cos (c+d x)} \sin (c+d x)}{d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.06 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} (2 A+B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 B \sqrt {\cos (c+d x)} \sin \left (\frac {1}{2} (c+d x)\right )\right )}{2 d} \]

[In]

Integrate[(Sqrt[a + a*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d*x]],x]

[Out]

(Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(2*A + B)*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*B*Sqrt[Co
s[c + d*x]]*Sin[(c + d*x)/2]))/(2*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(140\) vs. \(2(68)=136\).

Time = 18.24 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.81

method result size
default \(\frac {\sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) \left (B \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 A \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+B \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right )}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(141\)
parts \(\frac {2 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )}{d \sqrt {\cos \left (d x +c \right )}}+\frac {B \left (\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(182\)

[In]

int((a+cos(d*x+c)*a)^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(B*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2*A*arctan(tan(d
*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2))+B*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))/(1+cos(d*x+c)
)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.36 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.24 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {\sqrt {a \cos \left (d x + c\right ) + a} B \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (2 \, A + B\right )} \cos \left (d x + c\right ) + 2 \, A + B\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{d \cos \left (d x + c\right ) + d} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

(sqrt(a*cos(d*x + c) + a)*B*sqrt(cos(d*x + c))*sin(d*x + c) - ((2*A + B)*cos(d*x + c) + 2*A + B)*sqrt(a)*arcta
n(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

Sympy [F]

\[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\sqrt {a \left (\cos {\left (c + d x \right )} + 1\right )} \left (A + B \cos {\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

[In]

integrate((a+a*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(cos(c + d*x) + 1))*(A + B*cos(c + d*x))/sqrt(cos(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 939 vs. \(2 (68) = 136\).

Time = 0.46 (sec) , antiderivative size = 939, normalized size of antiderivative = 12.04 \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/4*(4*A*sqrt(a)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arct
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(
2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + cos(d*x + c)) + (2*(cos(2*d
*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
+ 2*c) + 1))*sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(
a) + sqrt(a)*(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*co
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*
d*x + 2*c) + 1))) + 1) - arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(co
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(
d*x + c)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 2
*c), cos(2*d*x + 2*c) + 1))) - 1) - arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)
^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*
cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + arctan2((cos(2*d*x
 + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2
*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x
+ 2*c), cos(2*d*x + 2*c) + 1)) - 1)))*B)/d

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+a \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+a\,\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2),x)

[Out]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(1/2))/cos(c + d*x)^(1/2), x)